Trivial normalization and cancellation rules for sums.
Theorem:
(defthm functional-self-inversion-of-minus (equal (- (- x)) (fix x)))
Theorem:
(defthm minus-cancellation-on-right (equal (+ x y (- x)) (fix y)))
Theorem:
(defthm minus-cancellation-on-left (equal (+ x (- x) y) (fix y)))
Theorem:
(defthm right-cancellation-for-+ (equal (equal (+ x z) (+ y z)) (equal (fix x) (fix y))))
Theorem:
(defthm left-cancellation-for-+ (equal (equal (+ x y) (+ x z)) (equal (fix y) (fix z))))
Theorem:
(defthm equal-minus-0 (equal (equal 0 (- x)) (equal 0 (fix x))))
Theorem:
(defthm inverse-of-+-as=0 (equal (equal (- a b) 0) (equal (fix a) (fix b))))
Theorem:
(defthm equal-minus-minus (equal (equal (- a) (- b)) (equal (fix a) (fix b))))