Concatenate 2 128-bit numbers together to form an 256-bit result.
(merge-2-u128s a1 a0) → result
Function:
(defun merge-2-u128s (a1 a0) (declare (type (unsigned-byte 128) a1 a0)) (declare (xargs :guard t)) (let ((__function__ 'merge-2-u128s)) (declare (ignorable __function__)) (mbe :logic (logapp* 128 (nfix a0) (nfix a1) 0) :exec (b* ((ans a0)) (the (unsigned-byte 256) (logior (the (unsigned-byte 256) (ash a1 (* 1 128))) (the (unsigned-byte 256) ans)))))))
Theorem:
(defthm acl2::natp-of-merge-2-u128s (b* ((result (merge-2-u128s a1 a0))) (natp result)) :rule-classes :type-prescription)
Theorem:
(defthm unsigned-byte-p-256-of-merge-2-u128s (unsigned-byte-p 256 (merge-2-u128s a1 a0)) :rule-classes ((:rewrite :corollary (implies (>= (nfix n) 256) (unsigned-byte-p n (merge-2-u128s a1 a0))) :hints (("Goal" :in-theory (disable unsigned-byte-p))))))
Theorem:
(defthm merge-2-u128s-is-merge-unsigneds (equal (merge-2-u128s a1 a0) (merge-unsigneds 128 (list (nfix a1) (nfix a0)))))
Theorem:
(defthm nat-equiv-implies-equal-merge-2-u128s-2 (implies (nat-equiv a0 a0-equiv) (equal (merge-2-u128s a1 a0) (merge-2-u128s a1 a0-equiv))) :rule-classes (:congruence))
Theorem:
(defthm nat-equiv-implies-equal-merge-2-u128s-1 (implies (nat-equiv a1 a1-equiv) (equal (merge-2-u128s a1 a0) (merge-2-u128s a1-equiv a0))) :rule-classes (:congruence))