Add two sparseints.
(sparseint-plus x y) → plus
Function:
(defun sparseint-plus$inline (x y) (declare (xargs :guard (and (sparseint-p x) (sparseint-p y)))) (let ((__function__ 'sparseint-plus)) (declare (ignorable __function__)) (sparseint$-plus (sparseint-fix x) (sparseint-fix y))))
Theorem:
(defthm sparseint-p-of-sparseint-plus (b* ((plus (sparseint-plus$inline x y))) (sparseint-p plus)) :rule-classes :rewrite)
Theorem:
(defthm sparseint-val-of-sparseint-plus (b* ((?plus (sparseint-plus$inline x y))) (equal (sparseint-val plus) (+ (sparseint-val x) (sparseint-val y)))))
Theorem:
(defthm sparseint-plus$inline-of-sparseint-fix-x (equal (sparseint-plus$inline (sparseint-fix x) y) (sparseint-plus$inline x y)))
Theorem:
(defthm sparseint-plus$inline-sparseint-equiv-congruence-on-x (implies (sparseint-equiv x x-equiv) (equal (sparseint-plus$inline x y) (sparseint-plus$inline x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm sparseint-plus$inline-of-sparseint-fix-y (equal (sparseint-plus$inline x (sparseint-fix y)) (sparseint-plus$inline x y)))
Theorem:
(defthm sparseint-plus$inline-sparseint-equiv-congruence-on-y (implies (sparseint-equiv y y-equiv) (equal (sparseint-plus$inline x y) (sparseint-plus$inline x y-equiv))) :rule-classes :congruence)