Compute the logeqv of two sparseints.
(sparseint-biteqv x y) → res
Function:
(defun sparseint-biteqv$inline (x y) (declare (xargs :guard (and (sparseint-p x) (sparseint-p y)))) (let ((__function__ 'sparseint-biteqv)) (declare (ignorable __function__)) (sparseint-binary-bitop 9 x y)))
Theorem:
(defthm sparseint-p-of-sparseint-biteqv (b* ((res (sparseint-biteqv$inline x y))) (sparseint-p res)) :rule-classes :type-prescription)
Theorem:
(defthm sparseint-biteqv-correct (b* ((?res (sparseint-biteqv$inline x y))) (equal (sparseint-val res) (logeqv (sparseint-val x) (sparseint-val y)))))
Theorem:
(defthm sparseint-biteqv$inline-of-sparseint-fix-x (equal (sparseint-biteqv$inline (sparseint-fix x) y) (sparseint-biteqv$inline x y)))
Theorem:
(defthm sparseint-biteqv$inline-sparseint-equiv-congruence-on-x (implies (sparseint-equiv x x-equiv) (equal (sparseint-biteqv$inline x y) (sparseint-biteqv$inline x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm sparseint-biteqv$inline-of-sparseint-fix-y (equal (sparseint-biteqv$inline x (sparseint-fix y)) (sparseint-biteqv$inline x y)))
Theorem:
(defthm sparseint-biteqv$inline-sparseint-equiv-congruence-on-y (implies (sparseint-equiv y y-equiv) (equal (sparseint-biteqv$inline x y) (sparseint-biteqv$inline x y-equiv))) :rule-classes :congruence)