Basic equivalence relation for ipasir$a structures.
Function:
(defun ipasir$a-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (ipasir$a-p acl2::x) (ipasir$a-p acl2::y)))) (equal (ipasir$a-fix acl2::x) (ipasir$a-fix acl2::y)))
Theorem:
(defthm ipasir$a-equiv-is-an-equivalence (and (booleanp (ipasir$a-equiv x y)) (ipasir$a-equiv x x) (implies (ipasir$a-equiv x y) (ipasir$a-equiv y x)) (implies (and (ipasir$a-equiv x y) (ipasir$a-equiv y z)) (ipasir$a-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm ipasir$a-equiv-implies-equal-ipasir$a-fix-1 (implies (ipasir$a-equiv acl2::x x-equiv) (equal (ipasir$a-fix acl2::x) (ipasir$a-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm ipasir$a-fix-under-ipasir$a-equiv (ipasir$a-equiv (ipasir$a-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-ipasir$a-fix-1-forward-to-ipasir$a-equiv (implies (equal (ipasir$a-fix acl2::x) acl2::y) (ipasir$a-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-ipasir$a-fix-2-forward-to-ipasir$a-equiv (implies (equal acl2::x (ipasir$a-fix acl2::y)) (ipasir$a-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm ipasir$a-equiv-of-ipasir$a-fix-1-forward (implies (ipasir$a-equiv (ipasir$a-fix acl2::x) acl2::y) (ipasir$a-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm ipasir$a-equiv-of-ipasir$a-fix-2-forward (implies (ipasir$a-equiv acl2::x (ipasir$a-fix acl2::y)) (ipasir$a-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)