Basic theorems about aig-restrict.
Theorem:
(defthm aig-equiv-implies-aig-equiv-aig-restrict-1 (implies (aig-equiv x x-equiv) (aig-equiv (aig-restrict x al) (aig-restrict x-equiv al))) :rule-classes (:congruence))
Theorem:
(defthm aig-alist-equiv-implies-aig-equiv-aig-restrict-2 (implies (aig-alist-equiv al al-equiv) (aig-equiv (aig-restrict x al) (aig-restrict x al-equiv))) :rule-classes (:congruence))
Theorem:
(defthm alist-equiv-implies-equal-aig-restrict-2 (implies (alist-equiv env env-equiv) (equal (aig-restrict x env) (aig-restrict x env-equiv))) :rule-classes (:congruence))
Theorem:
(defthm aig-restrict-aig-restrict (aig-equiv (aig-restrict (aig-restrict x al1) al2) (aig-restrict x (append (aig-restrict-alist al1 al2) al2))))