Basic theorems about aig-eval.
Theorem:
(defthm aig-equiv-implies-equal-aig-eval-1 (implies (aig-equiv x x-equiv) (equal (aig-eval x env) (aig-eval x-equiv env))) :rule-classes (:congruence))
Theorem:
(defthm aig-env-equiv-implies-iff-aig-env-lookup-2 (implies (aig-env-equiv al al-equiv) (iff (aig-env-lookup key al) (aig-env-lookup key al-equiv))) :rule-classes (:congruence))
Theorem:
(defthm aig-env-equiv-implies-equal-aig-eval-2 (implies (aig-env-equiv env env-equiv) (equal (aig-eval x env) (aig-eval x env-equiv))) :rule-classes (:congruence))
Theorem:
(defthm aig-eval-append-when-not-intersecting-alist-keys (implies (not (intersectp-equal (alist-keys env) (aig-vars x))) (equal (aig-eval x (append env rest)) (aig-eval x rest))))