Theorems about aig-vars from
Theorem:
(defthm aig-vars-cons (implies (or x (not y)) (equal (aig-vars (cons x y)) (set::union (aig-vars x) (aig-vars y)))))
Theorem:
(defthm member-aig-vars-alist-vals (implies (not (set::in v (aiglist-vars (alist-vals al)))) (not (set::in v (aig-vars (cdr (hons-assoc-equal x al)))))))
Theorem:
(defthm aig-vars-aig-not (equal (aig-vars (aig-not x)) (aig-vars x)))
Theorem:
(defthm member-aig-vars-aig-and (implies (and (not (set::in v (aig-vars x))) (not (set::in v (aig-vars y)))) (not (set::in v (aig-vars (aig-and x y))))))
Theorem:
(defthm member-aig-vars-aig-and-dumb (implies (and (not (set::in v (aig-vars x))) (not (set::in v (aig-vars y)))) (not (set::in v (aig-vars (aig-and-dumb x y))))))
Theorem:
(defthm member-aig-vars-aig-restrict (implies (and (not (and (set::in v (aig-vars x)) (not (member-equal v (alist-keys al))))) (not (set::in v (aiglist-vars (alist-vals al))))) (not (set::in v (aig-vars (aig-restrict x al))))))
Theorem:
(defthm member-aig-vars-aig-partial-eval (implies (not (and (set::in v (aig-vars x)) (not (member-equal v (alist-keys al))))) (not (set::in v (aig-vars (aig-partial-eval x al))))))