(match-aig-andc1 x) → (mv okp arg1 arg2)
Function:
(defun match-aig-andc1 (x) (declare (xargs :guard t)) (let ((__function__ 'match-aig-andc1)) (declare (ignorable __function__)) (b* (((mv okp na b) (match-aig-and x)) ((unless okp) (mv nil nil nil)) ((mv okp a) (match-aig-not na)) ((unless okp) (mv nil nil nil))) (mv t a b))))
Theorem:
(defthm match-aig-andc1-correct (b* (((mv okp arg1 arg2) (match-aig-andc1 x))) (implies okp (equal (aig-eval x env) (and (not (aig-eval arg1 env)) (aig-eval arg2 env))))))
Theorem:
(defthm acl2-count-of-match-aig-andc1-weak-1 (b* (((mv & arg1 &) (match-aig-andc1 x))) (<= (acl2-count arg1) (acl2-count x))) :rule-classes ((:rewrite) (:linear)))
Theorem:
(defthm acl2-count-of-match-aig-andc1-weak-2 (b* (((mv & & arg2) (match-aig-andc1 x))) (<= (acl2-count arg2) (acl2-count x))) :rule-classes ((:rewrite) (:linear)))
Theorem:
(defthm acl2-count-of-match-aig-andc1-strong-1 (b* (((mv okp arg1 &) (match-aig-andc1 x))) (implies okp (< (acl2-count arg1) (acl2-count x)))) :rule-classes ((:rewrite) (:linear)))
Theorem:
(defthm acl2-count-of-match-aig-andc1-strong-2 (b* (((mv okp & arg2) (match-aig-andc1 x))) (implies okp (< (acl2-count arg2) (acl2-count x)))) :rule-classes ((:rewrite) (:linear)))