(exception-desc-p x) → *
Function:
(defun exception-desc-p (x) (declare (xargs :guard t)) (let ((__function__ 'exception-desc-p)) (declare (ignorable __function__)) (and (alistp x) (subsetp-equal (strip-cars x) '(:ex :ud :gp :nm)))))
Function:
(defun exception-desc-fix (x) (declare (xargs :guard (exception-desc-p x))) (let ((__function__ 'exception-desc-fix)) (declare (ignorable __function__)) (mbe :logic (if (exception-desc-p x) x 'nil) :exec x)))
Function:
(defun exception-desc-equiv$inline (x y) (declare (xargs :guard (and (exception-desc-p x) (exception-desc-p y)))) (equal (exception-desc-fix x) (exception-desc-fix y)))
Theorem:
(defthm exception-desc-equiv-is-an-equivalence (and (booleanp (exception-desc-equiv x y)) (exception-desc-equiv x x) (implies (exception-desc-equiv x y) (exception-desc-equiv y x)) (implies (and (exception-desc-equiv x y) (exception-desc-equiv y z)) (exception-desc-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm exception-desc-equiv-implies-equal-exception-desc-fix-1 (implies (exception-desc-equiv x x-equiv) (equal (exception-desc-fix x) (exception-desc-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm exception-desc-fix-under-exception-desc-equiv (exception-desc-equiv (exception-desc-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))