(mnemonic-p x) → *
Function:
(defun mnemonic-p (x) (declare (xargs :guard t)) (let ((__function__ 'mnemonic-p)) (declare (ignorable __function__)) (or (stringp x) (keywordp x))))
Function:
(defun mnemonic-fix (x) (declare (xargs :guard (mnemonic-p x))) (let ((__function__ 'mnemonic-fix)) (declare (ignorable __function__)) (mbe :logic (if (mnemonic-p x) x ':none) :exec x)))
Theorem:
(defthm mnemonic-p-of-mnemonic-fix (mnemonic-p (mnemonic-fix x)))
Function:
(defun mnemonic-equiv$inline (x y) (declare (xargs :guard (and (mnemonic-p x) (mnemonic-p y)))) (equal (mnemonic-fix x) (mnemonic-fix y)))
Theorem:
(defthm mnemonic-equiv-is-an-equivalence (and (booleanp (mnemonic-equiv x y)) (mnemonic-equiv x x) (implies (mnemonic-equiv x y) (mnemonic-equiv y x)) (implies (and (mnemonic-equiv x y) (mnemonic-equiv y z)) (mnemonic-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm mnemonic-equiv-implies-equal-mnemonic-fix-1 (implies (mnemonic-equiv x x-equiv) (equal (mnemonic-fix x) (mnemonic-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm mnemonic-fix-under-mnemonic-equiv (mnemonic-equiv (mnemonic-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))