(fn-desc-p x) → *
Function:
(defun fn-desc-p (x) (declare (xargs :guard t)) (let ((__function__ 'fn-desc-p)) (declare (ignorable __function__)) (or (null x) (and (true-listp x) (symbolp (car x)) (eqlable-alistp (cdr x))))))
Function:
(defun fn-desc-fix (x) (declare (xargs :guard (fn-desc-p x))) (let ((__function__ 'fn-desc-fix)) (declare (ignorable __function__)) (mbe :logic (if (fn-desc-p x) x 'nil) :exec x)))
Function:
(defun fn-desc-equiv$inline (x y) (declare (xargs :guard (and (fn-desc-p x) (fn-desc-p y)))) (equal (fn-desc-fix x) (fn-desc-fix y)))
Theorem:
(defthm fn-desc-equiv-is-an-equivalence (and (booleanp (fn-desc-equiv x y)) (fn-desc-equiv x x) (implies (fn-desc-equiv x y) (fn-desc-equiv y x)) (implies (and (fn-desc-equiv x y) (fn-desc-equiv y z)) (fn-desc-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm fn-desc-equiv-implies-equal-fn-desc-fix-1 (implies (fn-desc-equiv x x-equiv) (equal (fn-desc-fix x) (fn-desc-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm fn-desc-fix-under-fn-desc-equiv (fn-desc-equiv (fn-desc-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))