(op-mode-p x) → *
Function:
(defun op-mode-p (x) (declare (xargs :guard t)) (let ((__function__ 'op-mode-p)) (declare (ignorable __function__)) (or (not x) (member-equal x '(:o64 :i64)))))
Function:
(defun op-mode-fix (x) (declare (xargs :guard (op-mode-p x))) (let ((__function__ 'op-mode-fix)) (declare (ignorable __function__)) (mbe :logic (if (op-mode-p x) x 'nil) :exec x)))
Function:
(defun op-mode-equiv$inline (x y) (declare (xargs :guard (and (op-mode-p x) (op-mode-p y)))) (equal (op-mode-fix x) (op-mode-fix y)))
Theorem:
(defthm op-mode-equiv-is-an-equivalence (and (booleanp (op-mode-equiv x y)) (op-mode-equiv x x) (implies (op-mode-equiv x y) (op-mode-equiv y x)) (implies (and (op-mode-equiv x y) (op-mode-equiv y z)) (op-mode-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm op-mode-equiv-implies-equal-op-mode-fix-1 (implies (op-mode-equiv x x-equiv) (equal (op-mode-fix x) (op-mode-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm op-mode-fix-under-op-mode-equiv (op-mode-equiv (op-mode-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))