(rex-p x) → *
Function:
(defun rex-p (x) (declare (xargs :guard t)) (let ((__function__ 'rex-p)) (declare (ignorable __function__)) (or (not x) (member-equal x '(:w :not-w)))))
Function:
(defun rex-fix (x) (declare (xargs :guard (rex-p x))) (let ((__function__ 'rex-fix)) (declare (ignorable __function__)) (mbe :logic (if (rex-p x) x 'nil) :exec x)))
Function:
(defun rex-equiv$inline (x y) (declare (xargs :guard (and (rex-p x) (rex-p y)))) (equal (rex-fix x) (rex-fix y)))
Theorem:
(defthm rex-equiv-is-an-equivalence (and (booleanp (rex-equiv x y)) (rex-equiv x x) (implies (rex-equiv x y) (rex-equiv y x)) (implies (and (rex-equiv x y) (rex-equiv y z)) (rex-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm rex-equiv-implies-equal-rex-fix-1 (implies (rex-equiv x x-equiv) (equal (rex-fix x) (rex-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm rex-fix-under-rex-equiv (rex-equiv (rex-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))