Basic cancellation rules for
See also more-rational-identities for additional reductions
involving
Theorem:
(defthm numerator-when-integerp (implies (integerp x) (equal (numerator x) x)))
Theorem:
(defthm integerp==>denominator=1 (implies (integerp x) (equal (denominator x) 1)))
Theorem:
(defthm equal-denominator-1 (equal (equal (denominator x) 1) (or (integerp x) (not (rationalp x)))))
Theorem:
(defthm *-r-denominator-r (equal (* r (denominator r)) (if (rationalp r) (numerator r) (fix r))))
Theorem:
(defthm /r-when-abs-numerator=1 (and (implies (equal (numerator r) 1) (equal (/ r) (denominator r))) (implies (equal (numerator r) -1) (equal (/ r) (- (denominator r))))))