(pos-equiv x y) is equality for positive numbers, i.e., equality up to pos-fix.
Function:
(defun pos-equiv$inline (x y) (declare (xargs :guard (and (posp x) (posp y)))) (equal (pos-fix x) (pos-fix y)))
Theorem:
(defthm pos-equiv-is-an-equivalence (and (booleanp (pos-equiv x y)) (pos-equiv x x) (implies (pos-equiv x y) (pos-equiv y x)) (implies (and (pos-equiv x y) (pos-equiv y z)) (pos-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm pos-equiv-implies-equal-pos-fix-1 (implies (pos-equiv x x-equiv) (equal (pos-fix x) (pos-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm pos-fix-under-pos-equiv (pos-equiv (pos-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))