(vl-emodwire-fix x) → x-prime
Function:
(defun vl-emodwire-fix$inline (x) (declare (xargs :guard (vl-emodwire-p x))) (let ((__function__ 'vl-emodwire-fix)) (declare (ignorable __function__)) (mbe :logic (if (vl-emodwire-p x) x 'acl2::bad-default-emodwire) :exec x)))
Theorem:
(defthm vl-emodwire-p-of-vl-emodwire-fix (b* ((x-prime (vl-emodwire-fix$inline x))) (vl-emodwire-p x-prime)) :rule-classes :rewrite)
Theorem:
(defthm vl-emodwire-fix-when-vl-emodwire-p (implies (vl-emodwire-p x) (equal (vl-emodwire-fix x) x)))
Function:
(defun vl-emodwire-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (vl-emodwire-p acl2::x) (vl-emodwire-p acl2::y)))) (equal (vl-emodwire-fix acl2::x) (vl-emodwire-fix acl2::y)))
Theorem:
(defthm vl-emodwire-equiv-is-an-equivalence (and (booleanp (vl-emodwire-equiv x y)) (vl-emodwire-equiv x x) (implies (vl-emodwire-equiv x y) (vl-emodwire-equiv y x)) (implies (and (vl-emodwire-equiv x y) (vl-emodwire-equiv y z)) (vl-emodwire-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm vl-emodwire-equiv-implies-equal-vl-emodwire-fix-1 (implies (vl-emodwire-equiv acl2::x x-equiv) (equal (vl-emodwire-fix acl2::x) (vl-emodwire-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm vl-emodwire-fix-under-vl-emodwire-equiv (vl-emodwire-equiv (vl-emodwire-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))