(vl-portdecl-lucidcheck x ss st) → new-st
Function:
(defun vl-portdecl-lucidcheck (x ss st) (declare (xargs :guard (and (vl-portdecl-p x) (vl-scopestack-p ss) (vl-lucidstate-p st)))) (declare (xargs :guard t)) (let ((__function__ 'vl-portdecl-lucidcheck)) (declare (ignorable __function__)) (b* ((x (vl-portdecl-fix x)) (ss (vl-scopestack-fix ss)) (st (vl-lucidstate-fix st))) (b* (((vl-portdecl x)) (ctx (vl-lucid-ctx ss x)) (st (vl-datatype-lucidcheck x.type ss st ctx))) (case x.dir (:vl-input (vl-lucid-mark-simple :set x.name ss st ctx)) (:vl-output (vl-lucid-mark-simple :used x.name ss st ctx)) (:vl-inout st))))))
Theorem:
(defthm vl-lucidstate-p-of-vl-portdecl-lucidcheck (b* ((new-st (vl-portdecl-lucidcheck x ss st))) (vl-lucidstate-p new-st)) :rule-classes :rewrite)
Theorem:
(defthm vl-portdecl-lucidcheck-of-vl-portdecl-fix-x (equal (vl-portdecl-lucidcheck (vl-portdecl-fix x) ss st) (vl-portdecl-lucidcheck x ss st)))
Theorem:
(defthm vl-portdecl-lucidcheck-vl-portdecl-equiv-congruence-on-x (implies (vl-portdecl-equiv x x-equiv) (equal (vl-portdecl-lucidcheck x ss st) (vl-portdecl-lucidcheck x-equiv ss st))) :rule-classes :congruence)
Theorem:
(defthm vl-portdecl-lucidcheck-of-vl-scopestack-fix-ss (equal (vl-portdecl-lucidcheck x (vl-scopestack-fix ss) st) (vl-portdecl-lucidcheck x ss st)))
Theorem:
(defthm vl-portdecl-lucidcheck-vl-scopestack-equiv-congruence-on-ss (implies (vl-scopestack-equiv ss ss-equiv) (equal (vl-portdecl-lucidcheck x ss st) (vl-portdecl-lucidcheck x ss-equiv st))) :rule-classes :congruence)
Theorem:
(defthm vl-portdecl-lucidcheck-of-vl-lucidstate-fix-st (equal (vl-portdecl-lucidcheck x ss (vl-lucidstate-fix st)) (vl-portdecl-lucidcheck x ss st)))
Theorem:
(defthm vl-portdecl-lucidcheck-vl-lucidstate-equiv-congruence-on-st (implies (vl-lucidstate-equiv st st-equiv) (equal (vl-portdecl-lucidcheck x ss st) (vl-portdecl-lucidcheck x ss st-equiv))) :rule-classes :congruence)