Substitute into a vl-arguments-p.
(vl-arguments-subst x sigma) → new-x
Function:
(defun vl-arguments-subst (x sigma) (declare (xargs :guard (and (vl-arguments-p x) (vl-sigma-p sigma)))) (declare (ignorable x sigma)) (let ((__function__ 'vl-arguments-subst)) (declare (ignorable __function__)) (vl-arguments-case x :vl-arguments-named (change-vl-arguments-named x :args (vl-namedarglist-subst x.args sigma)) :vl-arguments-plain (change-vl-arguments-plain x :args (vl-plainarglist-subst x.args sigma)))))
Theorem:
(defthm vl-arguments-p-of-vl-arguments-subst (b* ((new-x (vl-arguments-subst x sigma))) (vl-arguments-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm vl-arguments-subst-of-vl-arguments-fix-x (equal (vl-arguments-subst (vl-arguments-fix x) sigma) (vl-arguments-subst x sigma)))
Theorem:
(defthm vl-arguments-subst-vl-arguments-equiv-congruence-on-x (implies (vl-arguments-equiv x x-equiv) (equal (vl-arguments-subst x sigma) (vl-arguments-subst x-equiv sigma))) :rule-classes :congruence)
Theorem:
(defthm vl-arguments-subst-of-vl-sigma-fix-sigma (equal (vl-arguments-subst x (vl-sigma-fix sigma)) (vl-arguments-subst x sigma)))
Theorem:
(defthm vl-arguments-subst-vl-sigma-equiv-congruence-on-sigma (implies (vl-sigma-equiv sigma sigma-equiv) (equal (vl-arguments-subst x sigma) (vl-arguments-subst x sigma-equiv))) :rule-classes :congruence)