Substitute into a vl-delayoreventcontrol-p.
(vl-delayoreventcontrol-subst x sigma) → new-x
Function:
(defun vl-delayoreventcontrol-subst (x sigma) (declare (xargs :guard (and (vl-delayoreventcontrol-p x) (vl-sigma-p sigma)))) (declare (ignorable x sigma)) (let ((__function__ 'vl-delayoreventcontrol-subst)) (declare (ignorable __function__)) (b* ((x (vl-delayoreventcontrol-fix x))) (case (tag x) (:vl-delaycontrol (vl-delaycontrol-subst x sigma)) (:vl-eventcontrol (vl-eventcontrol-subst x sigma)) (otherwise (vl-repeateventcontrol-subst x sigma))))))
Theorem:
(defthm vl-delayoreventcontrol-p-of-vl-delayoreventcontrol-subst (b* ((new-x (vl-delayoreventcontrol-subst x sigma))) (vl-delayoreventcontrol-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm vl-delayoreventcontrol-subst-of-vl-delayoreventcontrol-fix-x (equal (vl-delayoreventcontrol-subst (vl-delayoreventcontrol-fix x) sigma) (vl-delayoreventcontrol-subst x sigma)))
Theorem:
(defthm vl-delayoreventcontrol-subst-vl-delayoreventcontrol-equiv-congruence-on-x (implies (vl-delayoreventcontrol-equiv x x-equiv) (equal (vl-delayoreventcontrol-subst x sigma) (vl-delayoreventcontrol-subst x-equiv sigma))) :rule-classes :congruence)
Theorem:
(defthm vl-delayoreventcontrol-subst-of-vl-sigma-fix-sigma (equal (vl-delayoreventcontrol-subst x (vl-sigma-fix sigma)) (vl-delayoreventcontrol-subst x sigma)))
Theorem:
(defthm vl-delayoreventcontrol-subst-vl-sigma-equiv-congruence-on-sigma (implies (vl-sigma-equiv sigma sigma-equiv) (equal (vl-delayoreventcontrol-subst x sigma) (vl-delayoreventcontrol-subst x sigma-equiv))) :rule-classes :congruence)