Gather immediate dependencies for an expression.
(vl-expr-immdeps x ans &key (ss 'ss) (ctx 'ctx)) → ans
Theorem:
(defthm return-type-of-vl-expr-immdeps.ans (b* ((?ans (vl-expr-immdeps-fn x ans ss ctx))) (vl-immdeps-p ans)) :rule-classes :rewrite)
Theorem:
(defthm return-type-of-vl-exprlist-immdeps.new-ans (b* ((?new-ans (vl-exprlist-immdeps-fn x ans ss ctx))) (vl-immdeps-p new-ans)) :rule-classes :rewrite)
Theorem:
(defthm vl-expr-immdeps-fn-of-vl-expr-fix-x (equal (vl-expr-immdeps-fn (vl-expr-fix x) ans ss ctx) (vl-expr-immdeps-fn x ans ss ctx)))
Theorem:
(defthm vl-expr-immdeps-fn-of-vl-immdeps-fix-ans (equal (vl-expr-immdeps-fn x (vl-immdeps-fix ans) ss ctx) (vl-expr-immdeps-fn x ans ss ctx)))
Theorem:
(defthm vl-expr-immdeps-fn-of-vl-scopestack-fix-ss (equal (vl-expr-immdeps-fn x ans (vl-scopestack-fix ss) ctx) (vl-expr-immdeps-fn x ans ss ctx)))
Theorem:
(defthm vl-expr-immdeps-fn-of-identity-ctx (equal (vl-expr-immdeps-fn x ans ss (identity ctx)) (vl-expr-immdeps-fn x ans ss ctx)))
Theorem:
(defthm vl-exprlist-immdeps-fn-of-vl-exprlist-fix-x (equal (vl-exprlist-immdeps-fn (vl-exprlist-fix x) ans ss ctx) (vl-exprlist-immdeps-fn x ans ss ctx)))
Theorem:
(defthm vl-exprlist-immdeps-fn-of-vl-immdeps-fix-ans (equal (vl-exprlist-immdeps-fn x (vl-immdeps-fix ans) ss ctx) (vl-exprlist-immdeps-fn x ans ss ctx)))
Theorem:
(defthm vl-exprlist-immdeps-fn-of-vl-scopestack-fix-ss (equal (vl-exprlist-immdeps-fn x ans (vl-scopestack-fix ss) ctx) (vl-exprlist-immdeps-fn x ans ss ctx)))
Theorem:
(defthm vl-exprlist-immdeps-fn-of-identity-ctx (equal (vl-exprlist-immdeps-fn x ans ss (identity ctx)) (vl-exprlist-immdeps-fn x ans ss ctx)))
Theorem:
(defthm vl-expr-immdeps-fn-vl-expr-equiv-congruence-on-x (implies (vl-expr-equiv x x-equiv) (equal (vl-expr-immdeps-fn x ans ss ctx) (vl-expr-immdeps-fn x-equiv ans ss ctx))) :rule-classes :congruence)
Theorem:
(defthm vl-expr-immdeps-fn-vl-immdeps-equiv-congruence-on-ans (implies (vl-immdeps-equiv ans ans-equiv) (equal (vl-expr-immdeps-fn x ans ss ctx) (vl-expr-immdeps-fn x ans-equiv ss ctx))) :rule-classes :congruence)
Theorem:
(defthm vl-expr-immdeps-fn-vl-scopestack-equiv-congruence-on-ss (implies (vl-scopestack-equiv ss ss-equiv) (equal (vl-expr-immdeps-fn x ans ss ctx) (vl-expr-immdeps-fn x ans ss-equiv ctx))) :rule-classes :congruence)
Theorem:
(defthm vl-expr-immdeps-fn-equal-congruence-on-ctx (implies (equal ctx ctx-equiv) (equal (vl-expr-immdeps-fn x ans ss ctx) (vl-expr-immdeps-fn x ans ss ctx-equiv))) :rule-classes :congruence)
Theorem:
(defthm vl-exprlist-immdeps-fn-vl-exprlist-equiv-congruence-on-x (implies (vl-exprlist-equiv x x-equiv) (equal (vl-exprlist-immdeps-fn x ans ss ctx) (vl-exprlist-immdeps-fn x-equiv ans ss ctx))) :rule-classes :congruence)
Theorem:
(defthm vl-exprlist-immdeps-fn-vl-immdeps-equiv-congruence-on-ans (implies (vl-immdeps-equiv ans ans-equiv) (equal (vl-exprlist-immdeps-fn x ans ss ctx) (vl-exprlist-immdeps-fn x ans-equiv ss ctx))) :rule-classes :congruence)
Theorem:
(defthm vl-exprlist-immdeps-fn-vl-scopestack-equiv-congruence-on-ss (implies (vl-scopestack-equiv ss ss-equiv) (equal (vl-exprlist-immdeps-fn x ans ss ctx) (vl-exprlist-immdeps-fn x ans ss-equiv ctx))) :rule-classes :congruence)
Theorem:
(defthm vl-exprlist-immdeps-fn-equal-congruence-on-ctx (implies (equal ctx ctx-equiv) (equal (vl-exprlist-immdeps-fn x ans ss ctx) (vl-exprlist-immdeps-fn x ans ss ctx-equiv))) :rule-classes :congruence)