Substitute into a vl-module-p.
(vl-module-subst x sigma) → new-x
Function:
(defun vl-module-subst (x sigma) (declare (xargs :guard (and (vl-module-p x) (vl-sigma-p sigma)))) (declare (ignorable x sigma)) (let ((__function__ 'vl-module-subst)) (declare (ignorable __function__)) (b* (((vl-module x) x)) (change-vl-module x :ports (vl-portlist-subst x.ports sigma) :portdecls (vl-portdecllist-subst x.portdecls sigma) :assigns (vl-assignlist-subst x.assigns sigma) :vardecls (vl-vardecllist-subst x.vardecls sigma) :fundecls (vl-fundecllist-subst x.fundecls sigma) :paramdecls (vl-paramdecllist-subst x.paramdecls sigma) :modinsts (vl-modinstlist-subst x.modinsts sigma) :gateinsts (vl-gateinstlist-subst x.gateinsts sigma) :alwayses (vl-alwayslist-subst x.alwayses sigma) :initials (vl-initiallist-subst x.initials sigma)))))
Theorem:
(defthm vl-module-p-of-vl-module-subst (b* ((new-x (vl-module-subst x sigma))) (vl-module-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm vl-module-subst-of-vl-module-fix-x (equal (vl-module-subst (vl-module-fix x) sigma) (vl-module-subst x sigma)))
Theorem:
(defthm vl-module-subst-vl-module-equiv-congruence-on-x (implies (vl-module-equiv x x-equiv) (equal (vl-module-subst x sigma) (vl-module-subst x-equiv sigma))) :rule-classes :congruence)
Theorem:
(defthm vl-module-subst-of-vl-sigma-fix-sigma (equal (vl-module-subst x (vl-sigma-fix sigma)) (vl-module-subst x sigma)))
Theorem:
(defthm vl-module-subst-vl-sigma-equiv-congruence-on-sigma (implies (vl-sigma-equiv sigma sigma-equiv) (equal (vl-module-subst x sigma) (vl-module-subst x sigma-equiv))) :rule-classes :congruence)