Substitute into a vl-paramargs-p.
(vl-paramargs-subst x sigma) → new-x
Function:
(defun vl-paramargs-subst (x sigma) (declare (xargs :guard (and (vl-paramargs-p x) (vl-sigma-p sigma)))) (declare (ignorable x sigma)) (let ((__function__ 'vl-paramargs-subst)) (declare (ignorable __function__)) (vl-paramargs-case x :vl-paramargs-named (change-vl-paramargs-named x :args (vl-namedparamvaluelist-subst x.args sigma)) :vl-paramargs-plain (change-vl-paramargs-plain x :args (vl-paramvaluelist-subst x.args sigma)))))
Theorem:
(defthm vl-paramargs-p-of-vl-paramargs-subst (b* ((new-x (vl-paramargs-subst x sigma))) (vl-paramargs-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm vl-paramargs-subst-of-vl-paramargs-fix-x (equal (vl-paramargs-subst (vl-paramargs-fix x) sigma) (vl-paramargs-subst x sigma)))
Theorem:
(defthm vl-paramargs-subst-vl-paramargs-equiv-congruence-on-x (implies (vl-paramargs-equiv x x-equiv) (equal (vl-paramargs-subst x sigma) (vl-paramargs-subst x-equiv sigma))) :rule-classes :congruence)
Theorem:
(defthm vl-paramargs-subst-of-vl-sigma-fix-sigma (equal (vl-paramargs-subst x (vl-sigma-fix sigma)) (vl-paramargs-subst x sigma)))
Theorem:
(defthm vl-paramargs-subst-vl-sigma-equiv-congruence-on-sigma (implies (vl-sigma-equiv sigma sigma-equiv) (equal (vl-paramargs-subst x sigma) (vl-paramargs-subst x sigma-equiv))) :rule-classes :congruence)