(vl-final-elaborate x elabindex &key (reclimit 'reclimit) (config 'config)) → (mv ok warnings new-x new-elabindex)
Function:
(defun vl-final-elaborate-fn (x elabindex reclimit config) (declare (xargs :stobjs (elabindex))) (declare (xargs :guard (and (vl-final-p x) (natp reclimit) (vl-simpconfig-p config)))) (let ((__function__ 'vl-final-elaborate)) (declare (ignorable __function__)) (b* (((vl-final x) (vl-final-fix x))) (b* (((mv ok warnings stmt elabindex) (vl-stmt-elaborate-fn x.stmt elabindex reclimit config))) (mv ok warnings (change-vl-final x :stmt stmt) elabindex)))))
Theorem:
(defthm vl-warninglist-p-of-vl-final-elaborate.warnings (b* (((mv ?ok ?warnings ?new-x ?new-elabindex) (vl-final-elaborate-fn x elabindex reclimit config))) (vl-warninglist-p warnings)) :rule-classes :rewrite)
Theorem:
(defthm vl-final-p-of-vl-final-elaborate.new-x (b* (((mv ?ok ?warnings ?new-x ?new-elabindex) (vl-final-elaborate-fn x elabindex reclimit config))) (vl-final-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm vl-final-elaborate-fn-of-vl-final-fix-x (equal (vl-final-elaborate-fn (vl-final-fix x) elabindex reclimit config) (vl-final-elaborate-fn x elabindex reclimit config)))
Theorem:
(defthm vl-final-elaborate-fn-vl-final-equiv-congruence-on-x (implies (vl-final-equiv x x-equiv) (equal (vl-final-elaborate-fn x elabindex reclimit config) (vl-final-elaborate-fn x-equiv elabindex reclimit config))) :rule-classes :congruence)
Theorem:
(defthm vl-final-elaborate-fn-of-nfix-reclimit (equal (vl-final-elaborate-fn x elabindex (nfix reclimit) config) (vl-final-elaborate-fn x elabindex reclimit config)))
Theorem:
(defthm vl-final-elaborate-fn-nat-equiv-congruence-on-reclimit (implies (acl2::nat-equiv reclimit reclimit-equiv) (equal (vl-final-elaborate-fn x elabindex reclimit config) (vl-final-elaborate-fn x elabindex reclimit-equiv config))) :rule-classes :congruence)
Theorem:
(defthm vl-final-elaborate-fn-of-vl-simpconfig-fix-config (equal (vl-final-elaborate-fn x elabindex reclimit (vl-simpconfig-fix config)) (vl-final-elaborate-fn x elabindex reclimit config)))
Theorem:
(defthm vl-final-elaborate-fn-vl-simpconfig-equiv-congruence-on-config (implies (vl-simpconfig-equiv config config-equiv) (equal (vl-final-elaborate-fn x elabindex reclimit config) (vl-final-elaborate-fn x elabindex reclimit config-equiv))) :rule-classes :congruence)