(vl-modinst-ctxexprs x mod ss) → ctxexprs
Function:
(defun vl-modinst-ctxexprs (x mod ss) (declare (xargs :guard (and (vl-modinst-p x) (stringp mod) (vl-scopestack-p ss)))) (let ((__function__ 'vl-modinst-ctxexprs)) (declare (ignorable __function__)) (let ((x (vl-modinst-fix x))) (vl-exprlist-ctxexprs (vl-modinst-allexprs x) (make-vl-context1 :mod mod :elem x) ss))))
Theorem:
(defthm vl-ctxexprlist-p-of-vl-modinst-ctxexprs (b* ((ctxexprs (vl-modinst-ctxexprs x mod ss))) (vl-ctxexprlist-p ctxexprs)) :rule-classes :rewrite)
Theorem:
(defthm vl-modinst-ctxexprs-of-vl-modinst-fix-x (equal (vl-modinst-ctxexprs (vl-modinst-fix x) mod ss) (vl-modinst-ctxexprs x mod ss)))
Theorem:
(defthm vl-modinst-ctxexprs-vl-modinst-equiv-congruence-on-x (implies (vl-modinst-equiv x x-equiv) (equal (vl-modinst-ctxexprs x mod ss) (vl-modinst-ctxexprs x-equiv mod ss))) :rule-classes :congruence)
Theorem:
(defthm vl-modinst-ctxexprs-of-str-fix-mod (equal (vl-modinst-ctxexprs x (str-fix mod) ss) (vl-modinst-ctxexprs x mod ss)))
Theorem:
(defthm vl-modinst-ctxexprs-streqv-congruence-on-mod (implies (streqv mod mod-equiv) (equal (vl-modinst-ctxexprs x mod ss) (vl-modinst-ctxexprs x mod-equiv ss))) :rule-classes :congruence)
Theorem:
(defthm vl-modinst-ctxexprs-of-vl-scopestack-fix-ss (equal (vl-modinst-ctxexprs x mod (vl-scopestack-fix ss)) (vl-modinst-ctxexprs x mod ss)))
Theorem:
(defthm vl-modinst-ctxexprs-vl-scopestack-equiv-congruence-on-ss (implies (vl-scopestack-equiv ss ss-equiv) (equal (vl-modinst-ctxexprs x mod ss) (vl-modinst-ctxexprs x mod ss-equiv))) :rule-classes :congruence)