Recognizer for vl-atts.
(vl-atts-p x) → *
Theorem:
(defthm vl-atts-p-of-nthcdr (implies (vl-atts-p (double-rewrite acl2::x)) (vl-atts-p (nthcdr acl2::n acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm vl-atts-p-of-repeat (iff (vl-atts-p (repeat acl2::n acl2::x)) (or (and (consp acl2::x) (stringp (car acl2::x)) (vl-maybe-expr-p (cdr acl2::x))) (zp acl2::n))) :rule-classes ((:rewrite)))
Theorem:
(defthm vl-atts-p-of-take (implies (vl-atts-p (double-rewrite acl2::x)) (iff (vl-atts-p (take acl2::n acl2::x)) (or (and (consp nil) (stringp (car nil)) (vl-maybe-expr-p (cdr nil))) (<= (nfix acl2::n) (len acl2::x))))) :rule-classes ((:rewrite)))
Theorem:
(defthm vl-atts-p-of-append (equal (vl-atts-p (append acl2::a acl2::b)) (and (vl-atts-p (list-fix acl2::a)) (vl-atts-p acl2::b))) :rule-classes ((:rewrite)))
Theorem:
(defthm vl-atts-p-of-rev (equal (vl-atts-p (rev acl2::x)) (vl-atts-p (list-fix acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm vl-atts-p-of-list-fix (implies (vl-atts-p acl2::x) (vl-atts-p (list-fix acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm true-listp-when-vl-atts-p-compound-recognizer (implies (vl-atts-p acl2::x) (true-listp acl2::x)) :rule-classes :compound-recognizer)
Theorem:
(defthm vl-atts-p-when-not-consp (implies (not (consp acl2::x)) (equal (vl-atts-p acl2::x) (not acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm vl-atts-p-of-cdr-when-vl-atts-p (implies (vl-atts-p (double-rewrite acl2::x)) (vl-atts-p (cdr acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm vl-atts-p-of-cons (equal (vl-atts-p (cons acl2::a acl2::x)) (and (and (consp acl2::a) (stringp (car acl2::a)) (vl-maybe-expr-p (cdr acl2::a))) (vl-atts-p acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm vl-atts-p-of-remove-assoc (implies (vl-atts-p acl2::x) (vl-atts-p (remove-assoc-equal acl2::name acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm vl-atts-p-of-put-assoc (implies (and (vl-atts-p acl2::x)) (iff (vl-atts-p (put-assoc-equal acl2::name acl2::val acl2::x)) (and (stringp acl2::name) (vl-maybe-expr-p acl2::val)))) :rule-classes ((:rewrite)))
Theorem:
(defthm vl-atts-p-of-fast-alist-clean (implies (vl-atts-p acl2::x) (vl-atts-p (fast-alist-clean acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm vl-atts-p-of-hons-shrink-alist (implies (and (vl-atts-p acl2::x) (vl-atts-p acl2::y)) (vl-atts-p (hons-shrink-alist acl2::x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm vl-atts-p-of-hons-acons (equal (vl-atts-p (hons-acons acl2::a acl2::n acl2::x)) (and (stringp acl2::a) (vl-maybe-expr-p acl2::n) (vl-atts-p acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm vl-maybe-expr-p-of-cdr-of-hons-assoc-equal-when-vl-atts-p (implies (vl-atts-p acl2::x) (iff (vl-maybe-expr-p (cdr (hons-assoc-equal acl2::k acl2::x))) (or (hons-assoc-equal acl2::k acl2::x) (vl-maybe-expr-p nil)))) :rule-classes ((:rewrite)))
Theorem:
(defthm alistp-when-vl-atts-p-rewrite (implies (vl-atts-p acl2::x) (alistp acl2::x)) :rule-classes ((:rewrite)))
Theorem:
(defthm alistp-when-vl-atts-p (implies (vl-atts-p acl2::x) (alistp acl2::x)) :rule-classes :tau-system)
Theorem:
(defthm vl-maybe-expr-p-of-cdar-when-vl-atts-p (implies (vl-atts-p acl2::x) (iff (vl-maybe-expr-p (cdar acl2::x)) (or (consp acl2::x) (vl-maybe-expr-p nil)))) :rule-classes ((:rewrite)))
Theorem:
(defthm stringp-of-caar-when-vl-atts-p (implies (vl-atts-p acl2::x) (iff (stringp (caar acl2::x)) (or (consp acl2::x) (stringp nil)))) :rule-classes ((:rewrite)))