(vl-pp-final x &key (ps 'ps)) → ps
Function:
(defun vl-pp-final-fn (x ps) (declare (xargs :stobjs (ps))) (declare (xargs :guard (vl-final-p x))) (let ((__function__ 'vl-pp-final)) (declare (ignorable __function__)) (b* (((vl-final x) x)) (vl-ps-seq (vl-progindent) (if x.atts (vl-pp-atts x.atts) ps) (vl-ps-span "vl_key" (vl-print "final ")) (vl-pp-stmt x.stmt) (vl-println "")))))
Theorem:
(defthm vl-pp-final-fn-of-vl-final-fix-x (equal (vl-pp-final-fn (vl-final-fix x) ps) (vl-pp-final-fn x ps)))
Theorem:
(defthm vl-pp-final-fn-vl-final-equiv-congruence-on-x (implies (vl-final-equiv x x-equiv) (equal (vl-pp-final-fn x ps) (vl-pp-final-fn x-equiv ps))) :rule-classes :congruence)