(vl-propport-strip x) → new-x
Function:
(defun vl-propport-strip (x) (declare (xargs :guard (vl-propport-p x))) (let ((__function__ 'vl-propport-strip)) (declare (ignorable __function__)) (b* (((vl-propport x) (vl-propport-fix x))) (b* ((type (vl-datatype-strip x.type)) (arg (vl-propactual-strip x.arg)) (atts ((lambda (x) (declare (ignore x)) nil) x.atts)) (loc ((lambda (x) (declare (ignore x)) *vl-fakeloc*) x.loc))) (change-vl-propport x :type type :arg arg :atts atts :loc loc)))))
Theorem:
(defthm vl-propport-p-of-vl-propport-strip (b* ((new-x (vl-propport-strip x))) (vl-propport-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm vl-propport-strip-of-vl-propport-fix-x (equal (vl-propport-strip (vl-propport-fix x)) (vl-propport-strip x)))
Theorem:
(defthm vl-propport-strip-vl-propport-equiv-congruence-on-x (implies (vl-propport-equiv x x-equiv) (equal (vl-propport-strip x) (vl-propport-strip x-equiv))) :rule-classes :congruence)