(vl-shadowcheck-modules x st) → (mv st new-x)
Function:
(defun vl-shadowcheck-modules (x st) (declare (xargs :guard (and (vl-modulelist-p x) (vl-shadowcheck-state-p st)))) (let ((__function__ 'vl-shadowcheck-modules)) (declare (ignorable __function__)) (b* (((when (atom x)) (mv (vl-shadowcheck-state-fix st) nil)) ((mv st car) (vl-shadowcheck-module (car x) st)) ((mv st rest) (vl-shadowcheck-modules (cdr x) st))) (mv st (cons car rest)))))
Theorem:
(defthm vl-shadowcheck-state-p-of-vl-shadowcheck-modules.st (b* (((mv ?st ?new-x) (vl-shadowcheck-modules x st))) (vl-shadowcheck-state-p st)) :rule-classes :rewrite)
Theorem:
(defthm vl-modulelist-p-of-vl-shadowcheck-modules.new-x (b* (((mv ?st ?new-x) (vl-shadowcheck-modules x st))) (vl-modulelist-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm vl-shadowcheck-modules-of-vl-modulelist-fix-x (equal (vl-shadowcheck-modules (vl-modulelist-fix x) st) (vl-shadowcheck-modules x st)))
Theorem:
(defthm vl-shadowcheck-modules-vl-modulelist-equiv-congruence-on-x (implies (vl-modulelist-equiv x x-equiv) (equal (vl-shadowcheck-modules x st) (vl-shadowcheck-modules x-equiv st))) :rule-classes :congruence)
Theorem:
(defthm vl-shadowcheck-modules-of-vl-shadowcheck-state-fix-st (equal (vl-shadowcheck-modules x (vl-shadowcheck-state-fix st)) (vl-shadowcheck-modules x st)))
Theorem:
(defthm vl-shadowcheck-modules-vl-shadowcheck-state-equiv-congruence-on-st (implies (vl-shadowcheck-state-equiv st st-equiv) (equal (vl-shadowcheck-modules x st) (vl-shadowcheck-modules x st-equiv))) :rule-classes :congruence)