(vl-pp-bind x ss &key (ps 'ps)) → ps
Function:
(defun vl-pp-bind-fn (x ss ps) (declare (xargs :stobjs (ps))) (declare (xargs :guard (and (vl-bind-p x) (vl-scopestack-p ss)))) (let ((__function__ 'vl-pp-bind)) (declare (ignorable __function__)) (b* (((vl-bind x))) (vl-ps-seq (vl-progindent) (vl-ps-span "vl_key" (vl-print "bind ")) (if x.scope (vl-ps-seq (vl-ps-span "vl_id" (vl-print-str (vl-maybe-escape-identifier x.scope))) (if (atom x.addto) ps (vl-ps-seq (vl-print " : ") (vl-pp-exprlist x.addto)))) (vl-pp-exprlist x.addto)) (if (and (consp x.modinsts) (atom (cdr x.modinsts))) (vl-pp-modinst (car x.modinsts) ss) (vl-println "// BOZO print multiple modinsts in a BIND?"))))))
Theorem:
(defthm vl-pp-bind-fn-of-vl-bind-fix-x (equal (vl-pp-bind-fn (vl-bind-fix x) ss ps) (vl-pp-bind-fn x ss ps)))
Theorem:
(defthm vl-pp-bind-fn-vl-bind-equiv-congruence-on-x (implies (vl-bind-equiv x x-equiv) (equal (vl-pp-bind-fn x ss ps) (vl-pp-bind-fn x-equiv ss ps))) :rule-classes :congruence)
Theorem:
(defthm vl-pp-bind-fn-of-vl-scopestack-fix-ss (equal (vl-pp-bind-fn x (vl-scopestack-fix ss) ps) (vl-pp-bind-fn x ss ps)))
Theorem:
(defthm vl-pp-bind-fn-vl-scopestack-equiv-congruence-on-ss (implies (vl-scopestack-equiv ss ss-equiv) (equal (vl-pp-bind-fn x ss ps) (vl-pp-bind-fn x ss-equiv ps))) :rule-classes :congruence)