(vl-hidsolo-mark mtype force-bogusp x ss st ctx) → new-st
Function:
(defun vl-hidsolo-mark (mtype force-bogusp x ss st ctx) (declare (xargs :guard (and (member mtype '(:used :set)) (booleanp force-bogusp) (vl-scopeexpr-p x) (vl-scopestack-p ss) (vl-lucidstate-p st) (vl-lucidctx-p ctx)))) (let ((__function__ 'vl-hidsolo-mark)) (declare (ignorable __function__)) (b* (((mv err trace ?scopectx tail) (vl-follow-scopeexpr x ss)) ((when err) (b* (((vl-lucidstate st))) (change-vl-lucidstate st :warnings st.warnings))) ((cons (vl-hidstep step) rest) trace) (key (make-vl-lucidkey :item step.item :scopestack (vl-normalize-scopestack step.ss))) (occ (if (and (not force-bogusp) (vl-hidexpr-case tail :end)) (make-vl-lucidocc-solo :ctx ctx) (make-vl-lucidocc-tail :ctx ctx))) (st (vl-hidtrace-mark-interfaces mtype rest st ctx)) (st (vl-lucidstate-mark mtype key occ st ctx))) st)))
Theorem:
(defthm vl-lucidstate-p-of-vl-hidsolo-mark (b* ((new-st (vl-hidsolo-mark mtype force-bogusp x ss st ctx))) (vl-lucidstate-p new-st)) :rule-classes :rewrite)
Theorem:
(defthm vl-hidsolo-mark-of-bool-fix-force-bogusp (equal (vl-hidsolo-mark mtype (acl2::bool-fix force-bogusp) x ss st ctx) (vl-hidsolo-mark mtype force-bogusp x ss st ctx)))
Theorem:
(defthm vl-hidsolo-mark-iff-congruence-on-force-bogusp (implies (iff force-bogusp force-bogusp-equiv) (equal (vl-hidsolo-mark mtype force-bogusp x ss st ctx) (vl-hidsolo-mark mtype force-bogusp-equiv x ss st ctx))) :rule-classes :congruence)
Theorem:
(defthm vl-hidsolo-mark-of-vl-scopeexpr-fix-x (equal (vl-hidsolo-mark mtype force-bogusp (vl-scopeexpr-fix x) ss st ctx) (vl-hidsolo-mark mtype force-bogusp x ss st ctx)))
Theorem:
(defthm vl-hidsolo-mark-vl-scopeexpr-equiv-congruence-on-x (implies (vl-scopeexpr-equiv x x-equiv) (equal (vl-hidsolo-mark mtype force-bogusp x ss st ctx) (vl-hidsolo-mark mtype force-bogusp x-equiv ss st ctx))) :rule-classes :congruence)
Theorem:
(defthm vl-hidsolo-mark-of-vl-scopestack-fix-ss (equal (vl-hidsolo-mark mtype force-bogusp x (vl-scopestack-fix ss) st ctx) (vl-hidsolo-mark mtype force-bogusp x ss st ctx)))
Theorem:
(defthm vl-hidsolo-mark-vl-scopestack-equiv-congruence-on-ss (implies (vl-scopestack-equiv ss ss-equiv) (equal (vl-hidsolo-mark mtype force-bogusp x ss st ctx) (vl-hidsolo-mark mtype force-bogusp x ss-equiv st ctx))) :rule-classes :congruence)
Theorem:
(defthm vl-hidsolo-mark-of-vl-lucidstate-fix-st (equal (vl-hidsolo-mark mtype force-bogusp x ss (vl-lucidstate-fix st) ctx) (vl-hidsolo-mark mtype force-bogusp x ss st ctx)))
Theorem:
(defthm vl-hidsolo-mark-vl-lucidstate-equiv-congruence-on-st (implies (vl-lucidstate-equiv st st-equiv) (equal (vl-hidsolo-mark mtype force-bogusp x ss st ctx) (vl-hidsolo-mark mtype force-bogusp x ss st-equiv ctx))) :rule-classes :congruence)
Theorem:
(defthm vl-hidsolo-mark-of-vl-lucidctx-fix-ctx (equal (vl-hidsolo-mark mtype force-bogusp x ss st (vl-lucidctx-fix ctx)) (vl-hidsolo-mark mtype force-bogusp x ss st ctx)))
Theorem:
(defthm vl-hidsolo-mark-vl-lucidctx-equiv-congruence-on-ctx (implies (vl-lucidctx-equiv ctx ctx-equiv) (equal (vl-hidsolo-mark mtype force-bogusp x ss st ctx) (vl-hidsolo-mark mtype force-bogusp x ss st ctx-equiv))) :rule-classes :congruence)