(vl-plainarg-lucidcheck x ss st ctx) → new-st
Function:
(defun vl-plainarg-lucidcheck (x ss st ctx) (declare (xargs :guard (and (vl-plainarg-p x) (vl-scopestack-p ss) (vl-lucidstate-p st) (vl-lucidctx-p ctx)))) (declare (xargs :guard t)) (let ((__function__ 'vl-plainarg-lucidcheck)) (declare (ignorable __function__)) (b* ((x (vl-plainarg-fix x)) (ss (vl-scopestack-fix ss)) (st (vl-lucidstate-fix st))) (b* (((vl-plainarg x)) (ctx (change-vl-lucidctx ctx :portname x.portname)) ((unless x.expr) st) (mpname (let ((look (cdr (assoc-equal "VL_REMOVED_EXPLICIT_MODPORT" x.atts)))) (and look (vl-string-expr->value look)))) (ifname (and mpname (let ((look (cdr (assoc-equal "VL_INTERFACE_NAME" x.atts)))) (and look (vl-string-expr->value look))))) (st (if ifname (vl-lucidst-mark-modport ifname mpname ss st ctx) st))) (case x.dir (:vl-input (vl-rhsexpr-lucidcheck x.expr ss st ctx)) (:vl-output (vl-lhsexpr-lucidcheck x.expr ss st ctx)) (otherwise (b* ((st (vl-rhsexpr-lucidcheck x.expr ss st ctx)) (st (vl-lhsexpr-lucidcheck x.expr ss st ctx))) st)))))))
Theorem:
(defthm vl-lucidstate-p-of-vl-plainarg-lucidcheck (b* ((new-st (vl-plainarg-lucidcheck x ss st ctx))) (vl-lucidstate-p new-st)) :rule-classes :rewrite)
Theorem:
(defthm vl-plainarg-lucidcheck-of-vl-plainarg-fix-x (equal (vl-plainarg-lucidcheck (vl-plainarg-fix x) ss st ctx) (vl-plainarg-lucidcheck x ss st ctx)))
Theorem:
(defthm vl-plainarg-lucidcheck-vl-plainarg-equiv-congruence-on-x (implies (vl-plainarg-equiv x x-equiv) (equal (vl-plainarg-lucidcheck x ss st ctx) (vl-plainarg-lucidcheck x-equiv ss st ctx))) :rule-classes :congruence)
Theorem:
(defthm vl-plainarg-lucidcheck-of-vl-scopestack-fix-ss (equal (vl-plainarg-lucidcheck x (vl-scopestack-fix ss) st ctx) (vl-plainarg-lucidcheck x ss st ctx)))
Theorem:
(defthm vl-plainarg-lucidcheck-vl-scopestack-equiv-congruence-on-ss (implies (vl-scopestack-equiv ss ss-equiv) (equal (vl-plainarg-lucidcheck x ss st ctx) (vl-plainarg-lucidcheck x ss-equiv st ctx))) :rule-classes :congruence)
Theorem:
(defthm vl-plainarg-lucidcheck-of-vl-lucidstate-fix-st (equal (vl-plainarg-lucidcheck x ss (vl-lucidstate-fix st) ctx) (vl-plainarg-lucidcheck x ss st ctx)))
Theorem:
(defthm vl-plainarg-lucidcheck-vl-lucidstate-equiv-congruence-on-st (implies (vl-lucidstate-equiv st st-equiv) (equal (vl-plainarg-lucidcheck x ss st ctx) (vl-plainarg-lucidcheck x ss st-equiv ctx))) :rule-classes :congruence)
Theorem:
(defthm vl-plainarg-lucidcheck-of-vl-lucidctx-fix-ctx (equal (vl-plainarg-lucidcheck x ss st (vl-lucidctx-fix ctx)) (vl-plainarg-lucidcheck x ss st ctx)))
Theorem:
(defthm vl-plainarg-lucidcheck-vl-lucidctx-equiv-congruence-on-ctx (implies (vl-lucidctx-equiv ctx ctx-equiv) (equal (vl-plainarg-lucidcheck x ss st ctx) (vl-plainarg-lucidcheck x ss st ctx-equiv))) :rule-classes :congruence)