(vl-always-lucidcheck x ss st) → new-st
Function:
(defun vl-always-lucidcheck (x ss st) (declare (xargs :guard (and (vl-always-p x) (vl-scopestack-p ss) (vl-lucidstate-p st)))) (declare (xargs :guard t)) (let ((__function__ 'vl-always-lucidcheck)) (declare (ignorable __function__)) (b* ((x (vl-always-fix x)) (ss (vl-scopestack-fix ss)) (st (vl-lucidstate-fix st))) (b* (((vl-always x)) (ctx (vl-basic-lucidctx ss x))) (vl-stmt-lucidcheck x.stmt ss st ctx)))))
Theorem:
(defthm vl-lucidstate-p-of-vl-always-lucidcheck (b* ((new-st (vl-always-lucidcheck x ss st))) (vl-lucidstate-p new-st)) :rule-classes :rewrite)
Theorem:
(defthm vl-always-lucidcheck-of-vl-always-fix-x (equal (vl-always-lucidcheck (vl-always-fix x) ss st) (vl-always-lucidcheck x ss st)))
Theorem:
(defthm vl-always-lucidcheck-vl-always-equiv-congruence-on-x (implies (vl-always-equiv x x-equiv) (equal (vl-always-lucidcheck x ss st) (vl-always-lucidcheck x-equiv ss st))) :rule-classes :congruence)
Theorem:
(defthm vl-always-lucidcheck-of-vl-scopestack-fix-ss (equal (vl-always-lucidcheck x (vl-scopestack-fix ss) st) (vl-always-lucidcheck x ss st)))
Theorem:
(defthm vl-always-lucidcheck-vl-scopestack-equiv-congruence-on-ss (implies (vl-scopestack-equiv ss ss-equiv) (equal (vl-always-lucidcheck x ss st) (vl-always-lucidcheck x ss-equiv st))) :rule-classes :congruence)
Theorem:
(defthm vl-always-lucidcheck-of-vl-lucidstate-fix-st (equal (vl-always-lucidcheck x ss (vl-lucidstate-fix st)) (vl-always-lucidcheck x ss st)))
Theorem:
(defthm vl-always-lucidcheck-vl-lucidstate-equiv-congruence-on-st (implies (vl-lucidstate-equiv st st-equiv) (equal (vl-always-lucidcheck x ss st) (vl-always-lucidcheck x ss st-equiv))) :rule-classes :congruence)