Fixing function for vl-lintresult structures.
(vl-lintresult-fix x) → new-x
Function:
(defun vl-lintresult-fix$inline (x) (declare (xargs :guard (vl-lintresult-p x))) (let ((__function__ 'vl-lintresult-fix)) (declare (ignorable __function__)) (mbe :logic (b* ((design (vl-design-fix (cdr (std::da-nth 0 (cdr x))))) (design0 (vl-design-fix (cdr (std::da-nth 1 (cdr x))))) (design-orig (vl-design-fix (cdr (std::da-nth 2 (cdr x))))) (sv-modalist (sv::modalist-fix (cdr (std::da-nth 3 (cdr x))))) (reportcard (vl-reportcard-fix (cdr (std::da-nth 4 (cdr x))))) (sd-probs (sd-problemlist-fix (cdr (std::da-nth 5 (cdr x)))))) (cons :vl-lintresult (list (cons 'design design) (cons 'design0 design0) (cons 'design-orig design-orig) (cons 'sv-modalist sv-modalist) (cons 'reportcard reportcard) (cons 'sd-probs sd-probs)))) :exec x)))
Theorem:
(defthm vl-lintresult-p-of-vl-lintresult-fix (b* ((new-x (vl-lintresult-fix$inline x))) (vl-lintresult-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm vl-lintresult-fix-when-vl-lintresult-p (implies (vl-lintresult-p x) (equal (vl-lintresult-fix x) x)))
Function:
(defun vl-lintresult-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (vl-lintresult-p acl2::x) (vl-lintresult-p acl2::y)))) (equal (vl-lintresult-fix acl2::x) (vl-lintresult-fix acl2::y)))
Theorem:
(defthm vl-lintresult-equiv-is-an-equivalence (and (booleanp (vl-lintresult-equiv x y)) (vl-lintresult-equiv x x) (implies (vl-lintresult-equiv x y) (vl-lintresult-equiv y x)) (implies (and (vl-lintresult-equiv x y) (vl-lintresult-equiv y z)) (vl-lintresult-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm vl-lintresult-equiv-implies-equal-vl-lintresult-fix-1 (implies (vl-lintresult-equiv acl2::x x-equiv) (equal (vl-lintresult-fix acl2::x) (vl-lintresult-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm vl-lintresult-fix-under-vl-lintresult-equiv (vl-lintresult-equiv (vl-lintresult-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-vl-lintresult-fix-1-forward-to-vl-lintresult-equiv (implies (equal (vl-lintresult-fix acl2::x) acl2::y) (vl-lintresult-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-vl-lintresult-fix-2-forward-to-vl-lintresult-equiv (implies (equal acl2::x (vl-lintresult-fix acl2::y)) (vl-lintresult-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm vl-lintresult-equiv-of-vl-lintresult-fix-1-forward (implies (vl-lintresult-equiv (vl-lintresult-fix acl2::x) acl2::y) (vl-lintresult-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm vl-lintresult-equiv-of-vl-lintresult-fix-2-forward (implies (vl-lintresult-equiv acl2::x (vl-lintresult-fix acl2::y)) (vl-lintresult-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)