(vl-final-strip x) → new-x
Function:
(defun vl-final-strip (x) (declare (xargs :guard (vl-final-p x))) (let ((__function__ 'vl-final-strip)) (declare (ignorable __function__)) (b* (((vl-final x) (vl-final-fix x))) (b* ((stmt (vl-stmt-strip x.stmt)) (atts ((lambda (x) (declare (ignore x)) nil) x.atts)) (loc ((lambda (x) (declare (ignore x)) *vl-fakeloc*) x.loc))) (change-vl-final x :stmt stmt :atts atts :loc loc)))))
Theorem:
(defthm vl-final-p-of-vl-final-strip (b* ((new-x (vl-final-strip x))) (vl-final-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm vl-final-strip-of-vl-final-fix-x (equal (vl-final-strip (vl-final-fix x)) (vl-final-strip x)))
Theorem:
(defthm vl-final-strip-vl-final-equiv-congruence-on-x (implies (vl-final-equiv x x-equiv) (equal (vl-final-strip x) (vl-final-strip x-equiv))) :rule-classes :congruence)