(vl-repetition-strip x) → new-x
Function:
(defun vl-repetition-strip (x) (declare (xargs :guard (vl-repetition-p x))) (let ((__function__ 'vl-repetition-strip)) (declare (ignorable __function__)) (b* (((vl-repetition x) (vl-repetition-fix x))) (b* ((left (vl-expr-strip x.left)) (right (vl-maybe-expr-strip x.right))) (change-vl-repetition x :left left :right right)))))
Theorem:
(defthm vl-repetition-p-of-vl-repetition-strip (b* ((new-x (vl-repetition-strip x))) (vl-repetition-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm vl-repetition-strip-of-vl-repetition-fix-x (equal (vl-repetition-strip (vl-repetition-fix x)) (vl-repetition-strip x)))
Theorem:
(defthm vl-repetition-strip-vl-repetition-equiv-congruence-on-x (implies (vl-repetition-equiv x x-equiv) (equal (vl-repetition-strip x) (vl-repetition-strip x-equiv))) :rule-classes :congruence)