Access the |X86ISA|::|OM| field of a mxcsrbits bit structure.
(mxcsrbits->om x) → om
Function:
(defun mxcsrbits->om$inline (x) (declare (xargs :guard (mxcsrbits-p x))) (mbe :logic (let ((x (mxcsrbits-fix x))) (part-select x :low 10 :width 1)) :exec (the (unsigned-byte 1) (logand (the (unsigned-byte 1) 1) (the (unsigned-byte 22) (ash (the (unsigned-byte 32) x) -10))))))
Theorem:
(defthm bitp-of-mxcsrbits->om (b* ((om (mxcsrbits->om$inline x))) (bitp om)) :rule-classes :rewrite)
Theorem:
(defthm mxcsrbits->om$inline-of-mxcsrbits-fix-x (equal (mxcsrbits->om$inline (mxcsrbits-fix x)) (mxcsrbits->om$inline x)))
Theorem:
(defthm mxcsrbits->om$inline-mxcsrbits-equiv-congruence-on-x (implies (mxcsrbits-equiv x x-equiv) (equal (mxcsrbits->om$inline x) (mxcsrbits->om$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm mxcsrbits->om-of-mxcsrbits (equal (mxcsrbits->om (mxcsrbits ie de ze oe ue pe daz im dm zm om um pm rc ftz reserved)) (bfix om)))
Theorem:
(defthm mxcsrbits->om-of-write-with-mask (implies (and (fty::bitstruct-read-over-write-hyps x mxcsrbits-equiv-under-mask) (mxcsrbits-equiv-under-mask x y fty::mask) (equal (logand (lognot fty::mask) 1024) 0)) (equal (mxcsrbits->om x) (mxcsrbits->om y))))