Access the |X86ISA|::|ZE| field of a mxcsrbits bit structure.
(mxcsrbits->ze x) → ze
Function:
(defun mxcsrbits->ze$inline (x) (declare (xargs :guard (mxcsrbits-p x))) (mbe :logic (let ((x (mxcsrbits-fix x))) (part-select x :low 2 :width 1)) :exec (the (unsigned-byte 1) (logand (the (unsigned-byte 1) 1) (the (unsigned-byte 30) (ash (the (unsigned-byte 32) x) -2))))))
Theorem:
(defthm bitp-of-mxcsrbits->ze (b* ((ze (mxcsrbits->ze$inline x))) (bitp ze)) :rule-classes :rewrite)
Theorem:
(defthm mxcsrbits->ze$inline-of-mxcsrbits-fix-x (equal (mxcsrbits->ze$inline (mxcsrbits-fix x)) (mxcsrbits->ze$inline x)))
Theorem:
(defthm mxcsrbits->ze$inline-mxcsrbits-equiv-congruence-on-x (implies (mxcsrbits-equiv x x-equiv) (equal (mxcsrbits->ze$inline x) (mxcsrbits->ze$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm mxcsrbits->ze-of-mxcsrbits (equal (mxcsrbits->ze (mxcsrbits ie de ze oe ue pe daz im dm zm om um pm rc ftz reserved)) (bfix ze)))
Theorem:
(defthm mxcsrbits->ze-of-write-with-mask (implies (and (fty::bitstruct-read-over-write-hyps x mxcsrbits-equiv-under-mask) (mxcsrbits-equiv-under-mask x y fty::mask) (equal (logand (lognot fty::mask) 4) 0)) (equal (mxcsrbits->ze x) (mxcsrbits->ze y))))