Semantics of a4vecs.
Function:
(defun a4vec-eval (x env) (declare (xargs :guard (a4vec-p x))) (let ((__function__ 'a4vec-eval)) (declare (ignorable __function__)) (b* (((a4vec x))) (4vec (aig-list->s x.upper env) (aig-list->s x.lower env)))))
Theorem:
(defthm 4vec-p-of-a4vec-eval (b* ((res (a4vec-eval x env))) (4vec-p res)) :rule-classes :rewrite)
Theorem:
(defthm a4vec-eval-of-a4vec (equal (a4vec-eval (a4vec upper lower) env) (4vec (aig-list->s upper env) (aig-list->s lower env))))
Theorem:
(defthm a4vec-eval-of-const (implies (syntaxp (quotep x)) (equal (a4vec-eval x env) (4vec (aig-list->s (a4vec->upper x) env) (aig-list->s (a4vec->lower x) env)))))
Theorem:
(defthm a4vec-eval-of-var (implies (syntaxp (symbolp x)) (equal (a4vec-eval x env) (4vec (aig-list->s (a4vec->upper x) env) (aig-list->s (a4vec->lower x) env)))))
Theorem:
(defthm a4vec-eval-of-a4vec-fix-x (equal (a4vec-eval (a4vec-fix x) env) (a4vec-eval x env)))
Theorem:
(defthm a4vec-eval-a4vec-equiv-congruence-on-x (implies (a4vec-equiv x x-equiv) (equal (a4vec-eval x env) (a4vec-eval x-equiv env))) :rule-classes :congruence)