Function:
(defun s4vec-resand (x y) (declare (xargs :guard (and (s4vec-p x) (s4vec-p y)))) (let ((__function__ 's4vec-resand)) (declare (ignorable __function__)) (b* (((s4vec x)) ((s4vec y))) (s4vec (sparseint-bitand (sparseint-bitor x.upper x.lower) (sparseint-bitand (sparseint-bitor y.upper y.lower) (sparseint-bitor x.upper y.upper))) (sparseint-bitand x.lower y.lower)))))
Theorem:
(defthm s4vec-p-of-s4vec-resand (b* ((resand (s4vec-resand x y))) (s4vec-p resand)) :rule-classes :rewrite)
Theorem:
(defthm s4vec-resand-correct (b* ((?resand (s4vec-resand x y))) (equal (s4vec->4vec resand) (4vec-resand (s4vec->4vec x) (s4vec->4vec y)))))
Theorem:
(defthm s4vec-resand-of-s4vec-fix-x (equal (s4vec-resand (s4vec-fix x) y) (s4vec-resand x y)))
Theorem:
(defthm s4vec-resand-s4vec-equiv-congruence-on-x (implies (s4vec-equiv x x-equiv) (equal (s4vec-resand x y) (s4vec-resand x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm s4vec-resand-of-s4vec-fix-y (equal (s4vec-resand x (s4vec-fix y)) (s4vec-resand x y)))
Theorem:
(defthm s4vec-resand-s4vec-equiv-congruence-on-y (implies (s4vec-equiv y y-equiv) (equal (s4vec-resand x y) (s4vec-resand x y-equiv))) :rule-classes :congruence)