Function:
(defun s4vec-equal (x y) (declare (xargs :guard (and (s4vec-p x) (s4vec-p y)))) (let ((__function__ 's4vec-equal)) (declare (ignorable __function__)) (mbe :logic (equal (s4vec->4vec x) (s4vec->4vec y)) :exec (if-s2vec-p (x y) (sparseint-equal (s2vec->val x) (s2vec->val y)) (and (sparseint-equal (s4vec->upper x) (s4vec->upper y)) (sparseint-equal (s4vec->lower x) (s4vec->lower y)))))))
Theorem:
(defthm s4vec-equal-of-s4vec-fix-x (equal (s4vec-equal (s4vec-fix x) y) (s4vec-equal x y)))
Theorem:
(defthm s4vec-equal-s4vec-equiv-congruence-on-x (implies (s4vec-equiv x x-equiv) (equal (s4vec-equal x y) (s4vec-equal x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm s4vec-equal-of-s4vec-fix-y (equal (s4vec-equal x (s4vec-fix y)) (s4vec-equal x y)))
Theorem:
(defthm s4vec-equal-s4vec-equiv-congruence-on-y (implies (s4vec-equiv y y-equiv) (equal (s4vec-equal x y) (s4vec-equal x y-equiv))) :rule-classes :congruence)