(s4vec->upper x) → upper
Function:
(defun s4vec->upper (x) (declare (xargs :guard (s4vec-p x))) (let ((__function__ 's4vec->upper)) (declare (ignorable __function__)) (if (atom x) (mbe :logic (if (integerp x) x -1) :exec x) (sparseint-fix (car x)))))
Theorem:
(defthm sparseint-p-of-s4vec->upper (b* ((upper (s4vec->upper x))) (sparseint-p upper)) :rule-classes :rewrite)
Theorem:
(defthm s4vec->upper-of-s4vec-fix-x (equal (s4vec->upper (s4vec-fix x)) (s4vec->upper x)))
Theorem:
(defthm s4vec->upper-s4vec-equiv-congruence-on-x (implies (s4vec-equiv x x-equiv) (equal (s4vec->upper x) (s4vec->upper x-equiv))) :rule-classes :congruence)