(svex-mask-acons x m al) → aa
Function:
(defun svex-mask-acons (x m al) (declare (xargs :guard (and (svex-p x) (4vmask-p m) (svex-mask-alist-p al)))) (let ((__function__ 'svex-mask-acons)) (declare (ignorable __function__)) (mbe :logic (cons (cons (svex-fix x) (4vmask-fix m)) (svex-mask-alist-fix al)) :exec (hons-acons x m al))))
Theorem:
(defthm svex-mask-alist-p-of-svex-mask-acons (b* ((aa (svex-mask-acons x m al))) (svex-mask-alist-p aa)) :rule-classes :rewrite)
Theorem:
(defthm svex-mask-acons-of-svex-fix-x (equal (svex-mask-acons (svex-fix x) m al) (svex-mask-acons x m al)))
Theorem:
(defthm svex-mask-acons-svex-equiv-congruence-on-x (implies (svex-equiv x x-equiv) (equal (svex-mask-acons x m al) (svex-mask-acons x-equiv m al))) :rule-classes :congruence)
Theorem:
(defthm svex-mask-acons-of-4vmask-fix-m (equal (svex-mask-acons x (4vmask-fix m) al) (svex-mask-acons x m al)))
Theorem:
(defthm svex-mask-acons-4vmask-equiv-congruence-on-m (implies (4vmask-equiv m m-equiv) (equal (svex-mask-acons x m al) (svex-mask-acons x m-equiv al))) :rule-classes :congruence)
Theorem:
(defthm svex-mask-acons-of-svex-mask-alist-fix-al (equal (svex-mask-acons x m (svex-mask-alist-fix al)) (svex-mask-acons x m al)))
Theorem:
(defthm svex-mask-acons-svex-mask-alist-equiv-congruence-on-al (implies (svex-mask-alist-equiv al al-equiv) (equal (svex-mask-acons x m al) (svex-mask-acons x m al-equiv))) :rule-classes :congruence)