(svtv-entry-fix x) → xx
Function:
(defun svtv-entry-fix (x) (declare (xargs :guard (svtv-entry-p x))) (let ((__function__ 'svtv-entry-fix)) (declare (ignorable __function__)) (mbe :logic (if (svtv-entry-p x) x '_) :exec x)))
Theorem:
(defthm svtv-entry-p-of-svtv-entry-fix (b* ((xx (svtv-entry-fix x))) (svtv-entry-p xx)) :rule-classes :rewrite)
Theorem:
(defthm svtv-entry-fix-of-svtv-entry-p (implies (svtv-entry-p x) (equal (svtv-entry-fix x) x)))
Function:
(defun svtv-entry-equiv$inline (x y) (declare (xargs :guard (and (svtv-entry-p x) (svtv-entry-p y)))) (equal (svtv-entry-fix x) (svtv-entry-fix y)))
Theorem:
(defthm svtv-entry-equiv-is-an-equivalence (and (booleanp (svtv-entry-equiv x y)) (svtv-entry-equiv x x) (implies (svtv-entry-equiv x y) (svtv-entry-equiv y x)) (implies (and (svtv-entry-equiv x y) (svtv-entry-equiv y z)) (svtv-entry-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm svtv-entry-equiv-implies-equal-svtv-entry-fix-1 (implies (svtv-entry-equiv x x-equiv) (equal (svtv-entry-fix x) (svtv-entry-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm svtv-entry-fix-under-svtv-entry-equiv (svtv-entry-equiv (svtv-entry-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-svtv-entry-fix-1-forward-to-svtv-entry-equiv (implies (equal (svtv-entry-fix x) y) (svtv-entry-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-svtv-entry-fix-2-forward-to-svtv-entry-equiv (implies (equal x (svtv-entry-fix y)) (svtv-entry-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm svtv-entry-equiv-of-svtv-entry-fix-1-forward (implies (svtv-entry-equiv (svtv-entry-fix x) y) (svtv-entry-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm svtv-entry-equiv-of-svtv-entry-fix-2-forward (implies (svtv-entry-equiv x (svtv-entry-fix y)) (svtv-entry-equiv x y)) :rule-classes :forward-chaining)