(svexarr-vars-aux n svexarr) → vars
Function:
(defun svexarr-vars-aux (n svexarr) (declare (xargs :stobjs (svexarr))) (declare (xargs :guard (natp n))) (declare (xargs :guard (<= (lnfix n) (svexs-length svexarr)))) (let ((__function__ 'svexarr-vars-aux)) (declare (ignorable __function__)) (if (zp n) nil (append (svex-vars (get-svex (1- n) svexarr)) (svexarr-vars-aux (1- n) svexarr)))))
Theorem:
(defthm svarlist-p-of-svexarr-vars-aux (b* ((vars (svexarr-vars-aux n svexarr))) (svarlist-p vars)) :rule-classes :rewrite)
Theorem:
(defthm vars-of-get-svex-aux (implies (and (not (member v (svexarr-vars-aux n svexarr))) (< (nfix m) (nfix n))) (not (member v (svex-vars (nth m svexarr))))))
Function:
(defun svexarr-vars-witness-aux (v n svexarr) (declare (xargs :stobjs (svexarr))) (declare (xargs :guard (natp n))) (declare (xargs :guard (<= (nfix n) (svexs-length svexarr)))) (let ((__function__ 'svexarr-vars-witness-aux)) (declare (ignorable __function__)) (if (zp n) nil (if (member-equal v (svex-vars (get-svex (1- n) svexarr))) (1- n) (svexarr-vars-witness-aux v (1- n) svexarr)))))
Theorem:
(defthm return-type-of-svexarr-vars-witness-aux (b* ((idx (svexarr-vars-witness-aux v n svexarr))) (iff (natp idx) idx)) :rule-classes :rewrite)
Theorem:
(defthm type-of-svexarr-vars-witness-aux (or (not (svexarr-vars-witness-aux v n svexarr)) (natp (svexarr-vars-witness-aux v n svexarr))) :rule-classes :type-prescription)
Theorem:
(defthm bound-of-svexarr-vars-witness-aux (implies (svexarr-vars-witness-aux v n svexarr) (< (svexarr-vars-witness-aux v n svexarr) (nfix n))) :rule-classes :linear)
Theorem:
(defthm svexarr-vars-aux-witness-under-iff (implies (not (member v (svex-vars (nth (svexarr-vars-witness-aux v n svexarr) svexarr)))) (not (svexarr-vars-witness-aux v n svexarr))))
Theorem:
(defthm member-svexarr-vars-aux (implies (not (svexarr-vars-witness-aux v n svexarr)) (not (member v (svexarr-vars-aux n svexarr)))))
Theorem:
(defthm svexarr-vars-witness-aux-of-nfix-n (equal (svexarr-vars-witness-aux v (nfix n) svexarr) (svexarr-vars-witness-aux v n svexarr)))
Theorem:
(defthm svexarr-vars-witness-aux-nat-equiv-congruence-on-n (implies (nat-equiv n n-equiv) (equal (svexarr-vars-witness-aux v n svexarr) (svexarr-vars-witness-aux v n-equiv svexarr))) :rule-classes :congruence)
Theorem:
(defthm svexarr-vars-aux-of-nfix-n (equal (svexarr-vars-aux (nfix n) svexarr) (svexarr-vars-aux n svexarr)))
Theorem:
(defthm svexarr-vars-aux-nat-equiv-congruence-on-n (implies (nat-equiv n n-equiv) (equal (svexarr-vars-aux n svexarr) (svexarr-vars-aux n-equiv svexarr))) :rule-classes :congruence)