(lhspairs-addr-p x) → *
Function:
(defun lhspairs-addr-p (x) (declare (xargs :guard (lhspairs-p x))) (let ((__function__ 'lhspairs-addr-p)) (declare (ignorable __function__)) (mbe :logic (svarlist-addr-p (lhspairs-vars x)) :exec (b* ((x (lhspairs-fix x)) ((when (atom x)) t)) (and (lhs-addr-p (caar x)) (lhs-addr-p (cdar x)) (lhspairs-addr-p (cdr x)))))))
Theorem:
(defthm lhspairs-addr-p-of-lhspairs-fix-x (equal (lhspairs-addr-p (lhspairs-fix x)) (lhspairs-addr-p x)))
Theorem:
(defthm lhspairs-addr-p-lhspairs-equiv-congruence-on-x (implies (lhspairs-equiv x x-equiv) (equal (lhspairs-addr-p x) (lhspairs-addr-p x-equiv))) :rule-classes :congruence)