Function:
(defun modname-equiv$inline (x y) (declare (xargs :guard (and (modname-p x) (modname-p y)))) (equal (modname-fix x) (modname-fix y)))
Theorem:
(defthm modname-equiv-is-an-equivalence (and (booleanp (modname-equiv x y)) (modname-equiv x x) (implies (modname-equiv x y) (modname-equiv y x)) (implies (and (modname-equiv x y) (modname-equiv y z)) (modname-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm modname-equiv-implies-equal-modname-fix-1 (implies (modname-equiv x x-equiv) (equal (modname-fix x) (modname-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm modname-fix-under-modname-equiv (modname-equiv (modname-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-modname-fix-1-forward-to-modname-equiv (implies (equal (modname-fix x) y) (modname-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-modname-fix-2-forward-to-modname-equiv (implies (equal x (modname-fix y)) (modname-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm modname-equiv-of-modname-fix-1-forward (implies (modname-equiv (modname-fix x) y) (modname-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm modname-equiv-of-modname-fix-2-forward (implies (modname-equiv x (modname-fix y)) (modname-equiv x y)) :rule-classes :forward-chaining)