Symbolic version of 4vec-rev-blocks.
Function:
(defun a4vec-rev-blocks (w b x) (declare (xargs :guard (and (a4vec-p w) (a4vec-p b) (a4vec-p x)))) (let ((__function__ 'a4vec-rev-blocks)) (declare (ignorable __function__)) (b* (((a4vec w) w) ((a4vec b) b) ((a4vec x) x)) (a4vec-ite (aig-and (a2vec-p w) (aig-not (aig-sign-s w.upper)) (a2vec-p b) (aig-not (aig-sign-s b.upper)) (aig-not (aig-=-ss b.upper nil))) (a4vec (aig-rev-blocks-sss 0 0 w.upper b.upper x.upper) (aig-rev-blocks-sss 0 0 w.upper b.upper x.lower)) (a4vec-x)))))
Theorem:
(defthm a4vec-p-of-a4vec-rev-blocks (b* ((res (a4vec-rev-blocks w b x))) (a4vec-p res)) :rule-classes :rewrite)
Theorem:
(defthm a4vec-rev-blocks-correct (equal (a4vec-eval (a4vec-rev-blocks w b x) env) (4vec-rev-blocks (a4vec-eval w env) (a4vec-eval b env) (a4vec-eval x env))))
Theorem:
(defthm a4vec-rev-blocks-of-a4vec-fix-w (equal (a4vec-rev-blocks (a4vec-fix w) b x) (a4vec-rev-blocks w b x)))
Theorem:
(defthm a4vec-rev-blocks-a4vec-equiv-congruence-on-w (implies (a4vec-equiv w w-equiv) (equal (a4vec-rev-blocks w b x) (a4vec-rev-blocks w-equiv b x))) :rule-classes :congruence)
Theorem:
(defthm a4vec-rev-blocks-of-a4vec-fix-b (equal (a4vec-rev-blocks w (a4vec-fix b) x) (a4vec-rev-blocks w b x)))
Theorem:
(defthm a4vec-rev-blocks-a4vec-equiv-congruence-on-b (implies (a4vec-equiv b b-equiv) (equal (a4vec-rev-blocks w b x) (a4vec-rev-blocks w b-equiv x))) :rule-classes :congruence)
Theorem:
(defthm a4vec-rev-blocks-of-a4vec-fix-x (equal (a4vec-rev-blocks w b (a4vec-fix x)) (a4vec-rev-blocks w b x)))
Theorem:
(defthm a4vec-rev-blocks-a4vec-equiv-congruence-on-x (implies (a4vec-equiv x x-equiv) (equal (a4vec-rev-blocks w b x) (a4vec-rev-blocks w b x-equiv))) :rule-classes :congruence)