Symbolic version of 3vec-reduction-or.
Function:
(defun a3vec-reduction-or (x) (declare (xargs :guard (a4vec-p x))) (let ((__function__ 'a3vec-reduction-or)) (declare (ignorable __function__)) (b* (((a4vec x))) (a4vec (aig-sterm (aig-not (aig-=-ss x.upper (aig-sterm nil)))) (aig-sterm (aig-not (aig-=-ss x.lower (aig-sterm nil))))))))
Theorem:
(defthm a4vec-p-of-a3vec-reduction-or (b* ((res (a3vec-reduction-or x))) (a4vec-p res)) :rule-classes :rewrite)
Theorem:
(defthm a3vec-reduction-or-correct (equal (a4vec-eval (a3vec-reduction-or x) env) (3vec-reduction-or (a4vec-eval x env))))
Theorem:
(defthm a3vec-reduction-or-of-a4vec-fix-x (equal (a3vec-reduction-or (a4vec-fix x)) (a3vec-reduction-or x)))
Theorem:
(defthm a3vec-reduction-or-a4vec-equiv-congruence-on-x (implies (a4vec-equiv x x-equiv) (equal (a3vec-reduction-or x) (a3vec-reduction-or x-equiv))) :rule-classes :congruence)