Basic equivalence relation for svar-boolmasks structures.
Function:
(defun svar-boolmasks-equiv$inline (x y) (declare (xargs :guard (and (svar-boolmasks-p x) (svar-boolmasks-p y)))) (equal (svar-boolmasks-fix x) (svar-boolmasks-fix y)))
Theorem:
(defthm svar-boolmasks-equiv-is-an-equivalence (and (booleanp (svar-boolmasks-equiv x y)) (svar-boolmasks-equiv x x) (implies (svar-boolmasks-equiv x y) (svar-boolmasks-equiv y x)) (implies (and (svar-boolmasks-equiv x y) (svar-boolmasks-equiv y z)) (svar-boolmasks-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm svar-boolmasks-equiv-implies-equal-svar-boolmasks-fix-1 (implies (svar-boolmasks-equiv x x-equiv) (equal (svar-boolmasks-fix x) (svar-boolmasks-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm svar-boolmasks-fix-under-svar-boolmasks-equiv (svar-boolmasks-equiv (svar-boolmasks-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-svar-boolmasks-fix-1-forward-to-svar-boolmasks-equiv (implies (equal (svar-boolmasks-fix x) y) (svar-boolmasks-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-svar-boolmasks-fix-2-forward-to-svar-boolmasks-equiv (implies (equal x (svar-boolmasks-fix y)) (svar-boolmasks-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm svar-boolmasks-equiv-of-svar-boolmasks-fix-1-forward (implies (svar-boolmasks-equiv (svar-boolmasks-fix x) y) (svar-boolmasks-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm svar-boolmasks-equiv-of-svar-boolmasks-fix-2-forward (implies (svar-boolmasks-equiv x (svar-boolmasks-fix y)) (svar-boolmasks-equiv x y)) :rule-classes :forward-chaining)